If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+12=76
We move all terms to the left:
2w^2+12-(76)=0
We add all the numbers together, and all the variables
2w^2-64=0
a = 2; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·2·(-64)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*2}=\frac{0-16\sqrt{2}}{4} =-\frac{16\sqrt{2}}{4} =-4\sqrt{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*2}=\frac{0+16\sqrt{2}}{4} =\frac{16\sqrt{2}}{4} =4\sqrt{2} $
| 108=2t^+6t | | 9x-27-180=0 | | 12+3x=7x+6 | | 4/5(x+27)=16 | | 6-2x+5+4x=-9 | | (x+7)/1/2=22 | | 445=t-193 | | -3x+14=3x+14 | | 11-6=3+4x | | X=185+-4x | | 0x+14=3x+14 | | 15=-3((2q-1) | | -24x+14=3x+14 | | 5x-24+x=180 | | -9x+14=3x+14 | | -4(3x+1)=80 | | 7x=204 | | -1x+14=3x+14 | | -10x+14=3x+14 | | 24/w=2/30 | | 9x+14=3x+14 | | 34+6x=2+4(x-7) | | 5x-8=24+4 | | 8x+14=3x+14 | | 7x+14=3x+14 | | 6x+14=3x+14 | | 4x+14=3x+14 | | 0=5(k+9 | | x5=180 | | -3(4x-5)=-7-10 | | 5x-8+133=180 | | 8(-9-2+3v-6v)=0 |